
TIDL: Mixed Presence Groupware Support for Legacy and Custom
Applications

Peter Hutterer1,2, Benjamin S. Close1,2, Bruce H. Thomas1,2
1Wearable Computer Laboratory

School of Computer and Information Science,
University of South Australia

Mawson Lakes SA 5095
{peter|cisbjc|thomas}@cs.unisa.edu.au

2National ICT Australia
Australia Technology Park

Bay 15 Locomotive Workshop
Eveleigh NSW 1430

Abstract
In this paper, we present a framework to use an arbitrary
number of mouse and keyboard input devices controlling
Swing based Java applications. These devices can be
distributed amongst any number of host computers on a
network. We use this framework to provide independent
input devices to a number of users on different host
computers. These users can then work collaboratively on
applications.

A major limitation for current real-time groupware is that
contemporary graphic environments do not support more
than one system cursor and keyboard. The Transparent
Input Device Layer (TIDL) is a framework we have
developed that provides an easy-to-use API for Java
applications to gain support for multiple independent
input devices. We have also created a wrapper application
to retrofit legacy applications with support for multiple
distributed input devices at runtime. This support can be
injected without altering or recompiling the application’s
source code. TIDL allows multiple devices to work across
window and application boundaries. Applications
supporting multiple input devices can employ features
such as simultaneous drag-and-drop and the entry of text
in multiple textboxes. In addition, different applications
running simultaneously can use multi-device support
independently and at the same time. We present four
applications that use TIDL to enable distributed groups to
work collaboratively. One of these applications has been
developed to make active use of TIDL, the other three
applications are applications we have found on the web
and gain support for multiple independent devices
through the wrapper application.

Keywords: Mixed Presence Groupware, CSCW,
Graphical User Interfaces.

1 Introduction

Research and development in Computer Supported
Collaborative Work (CSCW) has made substantial

Copyright © 2006, Australian Computer Society, Inc.
This paper appeared at the Seventh Australasian User
Interface Conference (AUIC2006), Hobart, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 50. Wayne Piekarski, Ed.
Reproduction for academic, not-for profit purposes
permitted provided this text is included.

progress in non-real-time groupware, resulting in
successful applications such as Microsoft Exchange or
Lotus Notes. These two applications allow users to work
in an asynchronous fashion, but do not support real-time
collaboration. Similarly, version control systems like
CVS, Subversion, or Microsoft SourceSafe are widely
used amongst developers, but are also limited to non-real-
time collaboration. The domain of real-time groupware
outside research institutions is limited to video
conferencing. The widespread use Microsoft NetMeeting
allows the sharing of the display of arbitrary applications
but has a strict floor control policy and does not allow
multiple users to collaborate simultaneously. The proper
software support for real-time CSCW applications is still
an open research question.

We aim to support real-time collaboration in legacy
applications as well as in newly written ones. Using and
developing collaborative applications require
significantly more effort than single-user applications
(Grudin 1988), and there is limited support from current
user interface toolkits. We postulate that real-time
collaboration is a natural way of working together. This is
demonstrated by the fact that people still congregate in
groups to perform collaborative work practices, without
any explicit knowledge of collaborative activities. To
state the obvious, people work together in collaborative
groups because it is an effective problem solving activity.

Mixed Presence Groupware (MPG) connects both co-
located and distributed collaborators and their disparate
displays via a common shared virtual workspace. In this
paper, we describe the Transparent Input Device Layer
(TIDL), an implementation of a MPG framework for Java
applications. TIDL supports an arbitrary number of users
on a number of different host computers. The TIDL
framework may be employed for new applications but
also for legacy applications without recompilation or
code alteration. A major research goal is to support the
developers of MPG applications with only minimal
additional effort.

We will describe previous research in the domain of real-
time collaborative software in Section 2. Section 3
describes our implementation of a MPG framework, and
Section 4 will detail some of the implementation
challenges we experienced and our solutions. We
describe four applications using the framework in Section
5, and finish with some concluding remarks in Section 6.

2 Related Work
Real-time groupware domains are divided by the number
of users and host computers that can be simultaneously
supported. Single Display Groupware (SDG) supports an
arbitrary number of users on a single host computer;
Distributed Groupware (DG) or distributed groupware
connects single users on individual host computers over a
network to share one desktop or application. Mixed
Display Groupware (MPG) is a combination of SDG and
DG and allows an arbitrary number of users on each host
computer. Figure 1 depicts an example MPG session with
a total of eight users on three host computers.

Stewart et al. (Stewart 1999, Stewart 1998) found that
users collaborating on a single display prefer independent
input devices instead of sharing one input device. Several
projects have investigated supporting multiple input
devices by different methods. One of the earliest SDG
applications is the Multi-Device Multi-User Multi-Editor
(MMM) (Bier 1991) that supports multiple users in either
a drawing or a text editor. MMM features private areas
for each user and differentiation between location
independent global menus and user-specific context-
sensitive menus. The PEBBLES project (Myers 1998)
uses PDAs instead of the traditional input devices,
keyboards and mice. The PDA provides each user with a
small display area that can be used for private data. The
DiamondTouch touch input device (Dietz 2001) can
identify two touch-points simultaneously and delivers this
information to the application.

The MID Java package (Hourcade 1999) employs calls to
the Microsoft Windows 98 API to provide multiple input
device support but is limited to only one host computer.
MIDDesktop (Shoemaker 2001), which is based on MID,
supports multiple Java applets running simultaneously on
one desktop. A similar project based on C# is the
SDGToolkit (Tse 2004), which has a focus on tabletop
displays and allows users to rotate the cursors to match
their position around the table. However, these projects
support multiple devices on one host computer but not
across different host computers. Moreover, while MID
and SDGToolkit are toolkits to provide application
developers support when developing real-time
groupware, these toolkits do not support legacy
applications.

The main technical challenges for a SDG application are
retrieving data from input devices, limiting floor control

and handling screen real estate. Current graphical
environments do not support more than one system
mouse or keyboard, and getting data from different
devices has to be performed at the lower level of the
operating system. Floor control becomes important with
an increasing number of users sharing a single display.
GUI elements often do not support multiple users
simultaneously and strict floor control permits only one
user to access a specific part of the GUI. Finally, screen
real estate can become a limitation to the maximum
number of users as applications may require user-
dependent menus.

The two commonly used architectures for DG are a
centralised and a replicated architecture. In the
centralised architecture, the application executes on one
machine but the GUI is distributed amongst all host
computers. In the replicated architecture, the application
is executed on each host computer and the user’s input
events are distributed amongst all host computers.

One of the earliest CSCW conferencing systems
supporting DG is Rapport (Ahuja 1988) that allows
legacy applications to be executed in a shared
environment. Rapport provides virtual meeting rooms for
the participants and support for telephone lines for audio
transmission. MMConf (Crowley 1990) is a CSCW
conferencing system employing a fully replicated
approach for group conferences. GroupKIT (Roseman
1992) is a toolkit for the development of real-time
groupware with shared displays. GroupKIT deals with
synchronisation issues, registration and concurrency, thus
reducing the development work required for application
developers in building groupware applications.

DG faces three challenges SDG does not have to face:
synchronisation, view sharing and telepresence. As
network latencies cause race conditions, and events from
different systems may arrive out of order, synchronisation
becomes important to ensure consistent application states
on each host computer. The centralised architecture may
be employed to address the synchronisation but
applications then need to implement methods to share the
view amongst different host computers. The centralised
architecture also suffers from fault tolerance concerns
since the central server is the single point of failure.
Finally, increasing telepresence is important for DG.
There is no physical awareness of the remote peers, so the
software has to provide means of replacing this missing
awareness. Video conferencing or audio streams can
improve awareness, and many DG toolkits and
applications provide telepointers to indicate the remote
users’ actions.

MPG is a very young domain for CSCW. An early
example is Tang et al.’s implementation of a MPG
drawing editor (Tang 2004), MPGSketch, based on
SDGToolkit and Collabrary (Boyle 2002). Multiple users
on different sites can draw onto the editor’s surface
simultaneously. They found that the perception of remote
groups is significantly different from the perception of
co-located peers. In their work, they tried to increase
telepresence by drawing digital arm shadows onto the
application to show remote user’s actions and gestures.

Figure 1. Layout of an MPG session. An arbitrary
number of users share one common display across
multiple host computers.

3 TIDL Framework
Our TIDL framework consists of three parts: the
platform-specific Multiple Direct Device Interface
(MDDI), the Transparent Input Device Layer (TIDL), and
TIDLInject, the wrapper application to inject multi-
device support into legacy applications. MDDI reads data
directly from the input devices using low-level OS
interfaces and passes it on to the TIDL abstraction. TIDL
then distributes those events across host computers to be
injected into the application. In this section, we will
describe both MDDI and TIDL in detail and explain how
TIDL supports both legacy applications via TIDLInject
and applications developed directly with the TIDL
Framework.

3.1 MDDI

Current graphics environments only support one system
cursor. Modern operating systems generally allow
multiple pointing devices, but when multiple pointing
devices are connected to a host computer, the data from
the different pointing devices is merged into a single
cursor. Current Java implementations do not provide
support to query each connected device independently or
to query events for their originating device.

MDDI is a library to query the operating system for
device data and to pass this information on to an
application or another library. MDDI currently runs on
Microsoft Windows XP and Linux, employing the
operating systems’ interfaces to query all connected
devices for data. The data is then wrapped into Java
objects using JNI and then passed on to the TIDL
abstraction. MDDI uses the Raw Input API1 via JNI
under Windows XP and the virtual device files in the
/dev2 directory under Linux.

The Windows XP Raw Input API supplies an application
with events including a handle to the input device
generating the specific event. From this handle a unique
device ID is created which is used in the object passed to
the Java implementation of MDDI.

In the Linux implementation of MDDI, we obtain a list of
all connected devices as maintained by the Linux kernel,
from the /dev directory. A mouse is represented as a file
in the notion of /dev/input/mouseN where N is the number
of the device. To gain access to the keyboards, the event
module has to be loaded by the kernel. Similarly to the
mouse, a keyboard is represented as /dev/input/eventN,
where N is again the number of the device. However,
with the event module loaded, mice are not only
represented as a mouse, but also as an event device. To
find out which event device represents a mouse and
which device a keyboard, MDDI parses the
/proc/bus/input/devices file. This file lists all connected
devices and the associated file handlers.

The mouse device files in Linux provide raw data streams
in the native mouse protocol that have to be parsed to

1 http://msdn.microsoft.com
2 http://www.pathname.com/fhs/

convert them into mouse events. Because of security
restrictions, accessing the device files is only allowed as
root. The PS/2 protocol requires a mouse driver to write
data to the mouse to reset the device and to query whether
it is plain PS/2 or extended PS/2 with an extra data byte
representing the mouse wheel motion. To avoid setting
the files globally writeable or executing the Java
application as root, we decided to use a Python script
running as root to read the files, convert the bytes into a
string representation of the event and then provide the
data on a TCP socket. The MDDI Java implementation
then accesses this socket to parse these events into Java
events.

Both interfaces allow MDDI to assign a device ID to each
event. MDDI encapsulates the data into Java objects and
these objects can be used for any application that needs to
query data from multiple devices. However, mouse
events represent relative coordinates, and not the absolute
coordinates commonly used in GUI APIs.

3.2 TIDL

TIDL receives events from MDDI via a listener interface
and transmits them across a TCP/IP network to all
connected host computers. TIDL employs a combination
of a replicated and a centralised architecture, running the
application on each host computer and distributing only
input events to each node in the TIDL setup (Figure 2). If
an event occurs (dotted line), TIDL forwards this event to
the central server (dashed line), which then redistributes
this event to every application instance (solid lines). We
chose this over a pure centralised architecture because
TIDL is designed to work with any application even if the
MPG functionality is injected at runtime. TIDL does not
have knowledge of the internals of an application and a
centralised architecture needs either active support from
the application or from the underlying graphical
environment to distribute the GUI. A centralised
approach is preferable over a replicated approach if there
is a high bandwidth network because it is easier to
maintain a consistent state on all nodes. In a replicated
approach, where applications are executed on each site,
race conditions occur due to network latencies, leading to
inconsistent behaviour and difficulties synchronising
applications once they are in different states. To avoid
these inconsistencies, TIDL uses a centralised event
distribution model. Although the application is executed
on each host computer, the events are sent to and

Figure 2. TIDL event distribution.

redistributed from a central server, thus ensuring the
order of events is identical on each host computer.
Previous implementations of similar toolkits treated local
devices differently to remote devices. As every event is
received from and transmitted to the central server, all
sites are truly equal. There is no notion of a local device
in TIDL. For an application, it is transparent which
devices are connected to the local machine and which
devices are remote.

The central element of TIDL is the TIDLGlassPane, a
subclass of Java’s GlassPane. The GlassPane is a Java
concept allowing a transparent layer on top of an
application. In Java Swing, a GlassPane can be used by
any javax.swing.RootPaneContainer. A GlassPane is first
to receive events generated by the Java AWT event
system and can thus be used to intercept all AWT events
and dispose of the events or replace them with custom
events. The TIDLGlassPane receives the events from the
TIDL subsystem and converts them into subclasses of
AWT Events. These events are then passed on to the
application, see Figure 3. The TIDLGlassPane draws the
user’s mouse cursors in distinct colours and maintains
each user’s colour across applications.

3.3 The TIDL API

TIDL has a strong focus on enabling multi-user support
in legacy applications. However, an application can be
developed using the TIDL API to gain additional
collaboration support including simultaneous drag-and-
drop, device level processing, and fine-grained annotation
support. Applications may use the TIDLGlassPane in two
ways: they can instantiate the TIDLGlassPane and assign
this object to the application window or use the
TIDLInject wrapper application to do so. The preferable
way is to not let the application instantiate the
TIDLGlassPane by itself. Instead, all applications should
be started up through the TIDLInject wrapper application,
as this allows legacy and newly created applications to be
run simultaneously. Applications using the TIDL API to
gain additional collaboration support will still gain this
functionality with the use of the TIDLInject wrapper
application.

The API we have developed is designed to enrich Java’s
own API with additional information. Because the API is
an extension to the AWT class library, the complexity of
learning to develop applications with TIDL is greatly

reduced for experienced AWT and Swing developers.
The AWT Event API provides developers with methods
that are called when events occur on the GUI. A mouse
event contains the coordinates of the mouse pointer, the
component which is about to receive the event, button
states and other information that may be used by the
application. Similarly, a keyboard event contains the
scancode and the character of the key, and whether it was
a key press or release event. TIDL extends those events
and each event passed on to the application contains a
TIDLDeviceId instance that contains two properties, the
host computer ID and the number of the device on the
specific host computer. An application may use this
information to monitor the users’ interactions with input
devices and host computers.

TIDL assigns all keyboards and mice to TIDLUser
objects, where each TIDLUser object defines one mouse
and keyboard for a user. From within the application, this
object can be used to redirect a certain user’s input event
or display additional information (such as cursor colour).
This TIDLUser object may be employed to support floor
control policies on the application’s components.
Moreover, a user will always have the same cursor colour
in any application unless the devices are physically
disconnected from and reconnected to a different host
computer. Disconnecting and reconnecting from a host
computer causes the devices to appear as new devices.

The TIDL framework can be extended with pluggable
modules. A pluggable module is a class that shares the
graphic context with the TIDLGlassPane, thus everything
a module draws on this context appears to be on top of
the application. Modules receive events before the
application does, allowing the following: 1) intercept the
events and then discard them or 2) extract information
from the event (i.e. which component the event is sent to)
and modify the application using this information.
However, components can be registered to be not affected
by a specific module. They are therefore called a veto
component.

One example for a module is the annotation layer. The
annotation layer is a transparent layer atop the application
and can work without the knowledge of the application.
The users can use this layer to annotate in distinct colours
without affecting the application. However, an
application can purposely switch the annotation layer on
and off as required. Switching the annotation on using a
GUI button component introduces problems when a GUI
element must be used to switch the annotation layer off
again. As the annotation layer covers the whole
application window, the button would not receive events
anymore. Instead, the users would annotate on the button
instead of switching the layer off. To control the
annotation layer when the layer is activated, a GUI
element has to be registered as veto component to be
able.

Managing floor control in groupware applications is a
complex challenge and each application has different
requirements. TIDL’s floor control module can be
activated with a keyboard shortcut or through the TIDL
API and restricts the application to only one user at a
time. This restriction is useful for legacy applications that

Figure 3. Event flow in the MDDI and TIDL system.

rely heavily on drag-and-drop. When the floor restriction
is active, users can still use the annotation layer.
Applications using the TIDL API can extract the user
information and implement a floor control policy that
matches the application’s requirements more closely.

3.4 Supporting Legacy Applications

We have created a wrapper application, TIDLInject, to
insert support for multiple independent input devices into
an application at runtime. The application needs no
knowledge of the TIDL library at creation time; the
TIDLInject wrapper application provides the
collaboration support without the need for code
modification or recompilation. TIDLInject has two main
features: 1) to inject the TIDLGlassPane into an
application at runtime and 2) to merge the GUI’s of all
open applications to be within a single frame. This
section gives an overview of how we inject TIDL’s
functionality into pre-existing Swing applications.

TIDLInject supports Swing applications that use the Java
AWT event queue. If the application is started up through
TIDLInject, TIDLInject displays a window with a button
to grab the application. Once the application has started
up, the user then presses the grab button to direct
TIDLInject to grab application’s GUI. TIDLInject then
queries the Java Virtual Machine for all open Frames by
employing the java.awt.Frame.getFrames() method. This
method returns an array with all open frames. If an
application only opens a single window, TIDL can then
insert the TIDLGlassPane into this JFrame. If the
application opens up more than one window or if multiple
applications are started up through TIDLInject,
TIDLInject creates a desktop-sized JFrame and one
JInternalFrame for each application window returned by
the getFrames() method. Swing applications add
components to ContentPanes, and TIDL obtains these
content panes for each window of the application and/or
for each application and assigns them to the respective
JInternalFrames. This effectively copies the GUI of the
application into an internal window. TIDL can then use
the TIDLGlassPane on the desktop-wide JFrame, thus
enabling support for multiple independent input devices
across multiple application windows and even across
different applications.

As mentioned before, the TIDLGlassPane converts TIDL
events into TIDLAWTEvents. These events are
subclassed from standard AWT events but are enriched
with a unique device ID containing a device number and
the originating host computer. Because the events are
subclassed from the AWT events, the TIDLGlassPane
can pass on TIDLAWTEvents to applications that do not
support multiple devices actively. The application treats
TIDLAWTEvents as standard AWTEvents and processes
them unaware of the extra data. The TIDLGlassPane does
not have knowledge of the application and acts identically
regardless of the underlying application.

The functionality TIDLInject gives to any application
without the application’s active support is: 1) uniquely
coloured mouse cursors for each connected mouse, 2) a
user-dependent annotation layer, 3) simple floor control,

and 4) independent keyboard foci for each connected
keyboard and thus the ability to send keyboard events to
different components (i.e. the ability to enter into
different textfields) simultaneously.

3.5 Support for Latecomers and Drop-Outs

An important element for real-time groupware is support
for latecomers and users who leave the session early.
TIDL has latecomer support for users operating on host
computers that are already connected. Users can connect
new mice and keyboards at runtime and immediately
receive their own cursor. However, this is limited to host
computers already connected to the central server. While
it is possible to connect host computers at a later time of
the session, it is not recommended, as the replicated
approach does not guarantee application consistency.
TIDL does not have knowledge about an application’s
internals, and does not stop the user from connecting.

TIDL at present does not have specific support for drop-
outs, if users leave the session their cursors simply cease
to move any more. No notification is sent to the other
users that this user dropped out. If a host computer
disconnects, all cursors originating from this host
computer cease to operate. However, because of the
central server approach in our event distribution system,
the central server must not drop out.

4 Implementation Challenges

During the development process, we faced several
challenges and limitations. The most notable challenges
were to support drag-and-drop for multiple devices and to
reduce the delays between the events and their effects on
the GUI. This section gives an overview about those
challenges and TIDL’s limitations.

4.1 Supporting Drag-And-Drop

Java has two APIs to support drag-and-drop in
applications. The AWT event model features a
mouseDragged() method in the MouseMotionListener
interface in the java.awt.event package. This method is
invoked when the mouse is moved while one or more
buttons are pressed. In connection with the
java.awt.event.MouseListener interface, which is used to
notify an application of a mouse button release, this can
be used for drag-and-drop in an application. TIDL adds
the device ID to each java.awt.event.MouseEvent and
applications can use this information to support
simultaneous drag-and-drop by multiple users.

Java also supports a more sophisticated drag-and-drop
API with the java.awt.dnd package. An application does
not need to handle each mouse event but instead only
designates a source for dragging objects
(java.awt.dnd.DragSource) and a target for dropping
objects (java.awt.dnd.DropTarget). The JVM then
handles the drag-and-drop process without affecting the
application using a java.awt.dnd.DragGestureRecognizer
and a java.awt.dnd.DragGestureListener. The former
initiates a gesture if the mouse is moved more than a
certain threshold and at least one of the buttons is
pressed. The latter is then notified of this gesture.

However, supporting the java.awt.dnd package in TIDL
is problematic. The drag-and-drop process does not use
the Java event queue and it is not possible to add the
device ID. Moreover, while it is possible to query a
component if it is registered as a mouse listener, the Java
API does not provide methods to query when a
DragGestureRecognizer is created or whether a
component has a DragGestureListener associated with it.
As our focus is on legacy applications, we cannot expect
applications to use TIDL’s API to initiate the drag-and-
drop process. Instead, we need to replace the DragSource
class with our own one. To support drag-and-drop in
TIDL we need to intercept the instantiation of a
DragGestureRecognizer.

Java supplies the “bootclasspath” commandline switch to
replace system classes with user-defined classes. On
startup, TIDL extracts the DragSource class from the
standard libraries and modifies its package definition to
be in the real.java.awt.dnd package. TIDL’s own
DragSource call is then inserted into the java.awt.dnd
package and acts as a proxy to the original
java.awt.dnd.DragSource class which is now in a
different package. When an application creates a
DragSource, TIDL’s replacement DragSource class is
invoked. For each method called on the replacement
DragSource, the real method on the original class is
invoked, with the return value passed back to the
application. This allows TIDL to replace the standard
DragGestureRecognizer with a custom written
TIDLMouseDragGestureRecognizer. The latter generates
events if the mouse is pressed; however, it enriches the
event with the device ID that caused the drag-and-drop
process.

Sun’s Java license prohibits rewriting system classes and
generating classes residing in any package with a
package-name starting with “java”. We obtained a Java
Research License, which is necessary to implement and
use the described method.

4.2 Speed Improvements

In our first implementations, we experienced low
response times in the user interfaces. Several reasons for
this could be identified. We were using the JADE agent
framework3 to transmit the mouse events to remote host
computers. JADE is an agent-based framework, and
agents were operating on the different host computers.
Each of these agents has several different behaviours,
where a behaviour receives and/or sends messages and
processes them accordingly. JADE encodes messages in a
custom format containing meta-information about the
originating agent, and transmits them as a string
representation to the remote agents. This encoding and
the general overhead of JADE proved to be too time-
consuming for real-time events such as mouse events or
key events. We switched to a simpler network handling
technique by utilising Java’s standard TCP libraries and a
protocol where the events are sent as strings of the length
of only a few bytes. This new technique resulted in faster

3 http://jade.tilab.com

response time. JADE did prove to be a useful prototyping
tool for the early versions of TIDL however.

A second performance problem was a severe delay
caused by repaints of the GUI. Initially, every mouse
movement caused a repaint on the TIDLGlassPane where
the cursors where visualised. However, a repaint on a
GlassPane causes a repaint on the underlying
components. If multiple mice are moved simultaneously
this can lead to hundreds of repaints per seconds. Usually
a repaint is a costly operation and excessive use of this
method should be avoided. The TIDLGlassPane now
limits repainting to a maximum of 30 frames per second
to reduce the number of repaints. This limitation
contributed to a much faster response time.

A final performance improvement was to limit the area of
the repaint. Instead of just calling the repaint() method on
the TIDLGlassPane, the rectangle surrounding the
cursor’s old and new position is given as an argument.
However, this gives only small speed benefits as Java
queues repaint requests and then executes the actual
repaint on the smallest rectangle including all areas given
in all requests. This can be an issue if one repaint requests
the top left corner of a window and another one the
bottom right corner. If those requests are queued and
accumulated, Java repaints the whole window. This
queue forces TIDL to perform poorly on applications
with very complex repaints. However, response times
during the use of ViSOR (Takatsuka 2005) (a complex
full-screen visualisation application) displaying thousands
of data points were less than half a second.

4.3 Limitations

There are a number of limitations to TIDL. The concept
of the GlassPane is limited to one GlassPane per JFrame,
effectively denying the application to use a GlassPane for
its own. Although we demonstrated a method of using the
GlassPane across multiple frames, this method does not
work if the application creates new frames at runtime (i.e.
if the application pops up a dialog box). Similarly, if the
application disposes the main frame containing the
TIDLGlassPane, it loses support for multiple independent
input devices. However, this limitation may be mitigated
by continuously polling the JVM for open frames and
resembling newly created frames in the desktop-wide
JFrame.

Low-level mouse events can cause different reactions if
the host computers have mixed setups. To safely support
different resolutions, TIDL would need semantic
knowledge about the underlying application. However,
TIDL works safely in mixed setups if applications do not
depend on the screen resolution to set window
dimensions.

As the Java Swing graphical environment does not
support multiple cursors, all connected mice contribute to
the system cursor’s motions. If all users move their
respective mice, the system cursor’s movements are
unpredictable. This results in the cursor being likely to
move outside of the application window. If one of the
users then performs a mouse click, the application may
lose its focus and all consecutive events would then be

sent to a different application or to the windowing
environment. To avoid this, we lock the system cursor in
a fixed position inside the application window.

Java does not use the AWT event queue for
ActionEvents. If a user performs a button click or an
action which causes an ActionEvent to be sent to the
component, the TIDLGlassPane cannot intercept and
discard this event. If the TIDLGlassPane were to then
create its own ActionEvent (with the additional device ID
of the user who performed the click), the component
would receive two ActionEvents, the original one and the
TIDL ActionEvent. Due to this, if an application needs
multi-user support on buttons, it has to implement the
java.awt.event.MouseListener methods.

5 Applications

We have employed TIDL for a number of applications.
First, we will describe three applications, JavaChess,
AllLights and JTans, that gain multi-user support at
runtime without recompilation. Then we will demonstrate
MPGCoast, a multi-user enhancement to a military
scheduling application and explain the features
MPGCoast gains by actively supporting the TIDL API.
Using the TIDLInject wrapper application, all
applications can be executed simultaneously and work
independently of each other.

5.1 JavaChess

JavaChess is a freely available Java Swing application4. It
is a chess game fully implemented in Java and features a
mode where the user can play versus a computer player.
By starting JavaChess through the TIDLInject wrapper
application, we gain multiplayer support where multiple
players can play together in a combined effort against the
computer. Chess is ideally suited for collaborative
purposes, as it allows users to combine their strategies to
besiege the computer player. TIDL’s annotation layer
allows for the discussion of strategies atop the
application.

JavaChess can be started up through TIDLInject without
modifications. However, it makes extensive use of dialog
boxes to inform users about invalid moves. For our use of
JavaChess, we altered one line of code to display an error
on the console instead of displaying the dialog box.

5.2 AllLights

AllLights5 is a puzzle game that displays a 5x5 matrix of
squares, representing lights which can be switched on and
off. Each light affects its immediate neighbours and
changes their states. The goal is to switch all lights on.

Using TIDL to enrich AllLights with support for multiple
input devices allows an arbitrary number of users to solve
the puzzles. AllLights only uses mouse moves and mouse
click events with no events requiring tracking the state of
the mouse (as drag-and-drop would). Because of this,

4 http://www.java-chess.de
5 http://www.ability.org.uk/alllights.html

playing AllLights with an arbitrary number of users has a
similar feeling as playing it in single-user mode.

5.3 JTans

JTans6 is a free Java implementation of the popular
Tangram game. The Tangram game requires players to
rebuild a given figure with a set of geometric shapes.
JTans can be retrofitted with TIDL support at runtime and
supports an arbitrary number of users. However, because
JTans makes heavy use of drag-and-drop it shows the
limitations of injecting TIDL into legacy application.
Although it receives events tagged with the device ID, it
treats them as coming from only one device. It is
therefore not possible to drag or rotate multiple pieces
simultaneously. However, with a small code alteration to
support TIDL, it would be possible to have any number
of users moving pieces at one time.

5.4 MPGCoast

MPGCoast is an GUI extension to the Australian Defence
Science and Technology Organisation’s COAST
application (Zhang 2004). COAST provides military
commanders with a tabular based application to
determine a course of action to achieve a specified
military goal. Although the development of these courses
of actions is done in collaborative group, the current
COAST implementation does not support multiple users
simultaneously. The users enter tasks in text-based GUIs;
the GUI itself makes heavy use of pop-up windows.
These pop-up windows occlude other parts of the GUI
and impede real-time collaboration.

We have built MPGCoast as a GUI extension to represent
the tasks as a directed graph view. The users can add and
remove tasks; a task’s dependencies are shown as links to
other nodes of the graph, see Figure 4. As with
JavaChess, one of the main benefits for users is the
annotation layer, which is integrated into the GUI using
the previously mentioned veto-components. Users may
switch to a text-based representation of the tasks at any
point in time.

6 http://jtans.sourceforge.net

Figure 4. MPGCoast uses the TIDL API to
support multiple input devices.

6 Conclusion
In this paper we presented TIDL, a toolkit to use multiple
independent input devices in Swing based Java
applications. The applications use the AWT event API
but receive events that are enriched with a device ID to
identify the originating user and host computer. This
information can then be employed to enable features such
as simultaneous drag-and-drop. The input devices can be
connected to any host computer in the network, with each
host computer supporting an arbitrary number of devices.
This domain is known as Mixed Presence Groupware and
allows distributed groups to work collaboratively on a
shared application.

Our implementation is an improvement over previous
toolkits as it is possible to use multiple input devices on
legacy applications and not only with applications
developed with the API. We described a wrapper
application, TIDLInject, which can modify applications at
runtime to support a large subset of the multi-user
features TIDL provides. This wrapper application also
allows the use of multiple input devices across
application windows and different applications
simultaneously. An application does not have to know
about TIDL at any time, it can be retrofitted with this
support without code alteration or the need for
recompilation.

7 Acknowledgements

We give our thanks to the ViCAT team, mainly Peter
Eades, Julien Epps, Masahiro Takatsuka and Mike Wu
for their feedback during the development. Additional
thanks go to Wolfgang Hochleitner, Aaron Stafford,
Stewart Itzstein and Wayne Piekarski for improving this
paper. Also, we want to thank the DSTO for providing us
access to the COAST application. Finally, we thank Sun
for providing a Java Research License.

8 References

Ahuja, S. R., Ensor, J. R., and Horn, D. N. (1988): The
rapport multimedia conferencing system. SIGOIS Bull.
9(2): 1-8.

Bier, E. A. and Freeman, S. (1991): MMM: a user
interface architecture for shared editors on a single
screen. In Proc. of the 4th annual ACM symposium on
User interface software and technology, 79-86, Hilton
Head, South Carolina, United States, ACM Press.

Boyle, M. and Greenberg, S. (2002): GroupLab
Collabrary: A toolkit for multimedia groupware. J.
Patterson (Ed.) ACM CSCW Workshop on Networking
Services for Groupware.

Crowley, T., Milazzo, P., Baker, E., Forsdick, H., and
Tomlinson, R. (1990): MMConf: an infrastructure for
building shared multimedia applications. In
Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, 329-342, Los
Angeles, California, United States, ACM Press.

Dietz, P. and Leigh, D. (2001): DiamondTouch: a multi-
user touch technology. In UIST '01: Proceedings of the

14th annual ACM symposium on User interface
software and technology, 219-226, Orlando, Florida,
ACM Press.

Grudin, J. (1988): Why CSCW Applications Fail:
Problems in the Design and Evaluation of
Organizational Interfaces. In Proceedings of the ACM
Conference on Computer-Supported Cooperative
Work, 85-93, Portland, Oregon, USA, ACM Press.

Hourcade, J. P. and Bederson, B. B. (1999): Architecture
and Implementation of a Java Package for Multiple
Input Devices (MID). College Park, MD 20742, USA.

Myers, B. A., Stiel, H., and Gargiulo, R. (1998):
Collaboration using multiple PDAs connected to a PC.
In Proceedings of the 1998 ACM conference on
Computer supported cooperative work, 285-294,
Seattle, Washington, United States, ACM Press.

Roseman, M. and Greenberg, S. (1992): GROUPKIT: a
groupware toolkit for building real-time conferencing
applications. In CSCW '92: Proceedings of the 1992
ACM conference on Computer-supported cooperative
work, 43-50, Toronto, Ontario, Canada, ACM Press.

Shoemaker, G. B. D. and Inkpen, K. M. (2001):
MIDDesktop: An Application Framework for Single
Display Groupware Investigations. Burnaby, BC,
Canda.

Stewart, J., Bederson, B. B., and Druin, A. (1999): Single
display groupware: a model for co-present
collaboration. In Proc. of the SIGCHI conference on
Human factors in computing systems, 286-293,
Pittsburgh, Pennsylvania, United States, ACM Press.

Stewart, J., Raybourn, E. M., Bederson, B., and Druin, A.
(1998): When two hands are better than one: enhancing
collaboration using single display groupware. In CHI
'98: CHI 98 conference summary on Human factors in
computing systems, 287-288, Los Angeles, California,
United States, ACM Press.

Takatsuka, M. (2005): A component-oriented software
authoring system for exploratory visualization. Future
Generation Computer Systems: Journal of Grid
Computing: Theory, Methods and Applications, 21(7):
1213-1222.

Tang, A., Boyle, M., and Greenberg, S. (2004): Display
and presence disparity in Mixed Presence Groupware.
In CRPIT '28: Proceedings of the fifth conference on
Australasian user interface, 73-82, Dunedin, New
Zealand, Australian Computer Society, Inc.

Tse, E. and Greenberg, S. (2004): Rapidly prototyping
Single Display Groupware through the SDGToolkit. In
Proceedings of the fifth conference on Australasian
user interface, 101-110, Dunedin, New Zealand,
Australian Computer Society, Inc.

Zhang, L., Kristensen, L. M., Mitchell, B., Gallash, G.,
Mechlenborg, P., and Janczura, C. (2004): COAST -
An Operational Planning Tool for Course of Action
Development and Analysis. In Proceedings of the 9th
International Command and Control Research and
Technology Symposium.

