
Supporting Mixed Presence Groupware in Tabletop Applications

Peter Hutterer
1,2

, Benjamin S. Close
1,2

, and Bruce H. Thomas
1,2

1
Wearable Computer Laboratory

School of Computer and Information

Science,

University of South Australia

Mawson Lakes SA 5095

{peter|cisbjc|thomas}@cs.unisa.edu.au

2
National ICT Australia

Australia Technology Park

Bay 15 Locomotive Workshop

Eveleigh NSW 1430

Abstract
In this paper we present the Transparent Input

Device Layer framework to extend Java applications

with support for multiple distributed input devices, a

major requirement for tabletop applications. This

overcomes a key restriction of current graphical

environments to support only a single system cursor

and one keyboard, and allows the cursor and

keyboard control of applications to be performed by

input devices that are connected to other hosts on the

network. Applications can be developed with this

framework and therefore allow operations such as

simultaneous drag-and-drop by multiple users.

Additionally, we have created a wrapper application

to inject support for multiple input devices into

legacy applications at runtime—without the need for

code alteration or recompilation.

We present two tabletop applications that make

use of our framework: One is a graphical front-end

to a military course of action scheduling application

and was developed with the framework. The second

application, a component based data visualisation

application, employs the injection wrapper

application to gain support for distributed multiple

input devices at runtime.

1. Introduction

Tabletop displays for collaborative workspaces

introduce a new set of challenges. Applications for

desktop computing are traditionally designed for a

single user, while tabletop displays are ideally suited

to support multiple users on one site working

shoulder to shoulder. Our NICTA colleagues and

ourselves are investigating the use of tabletop

display technology, in conjunction with Access Grid

video teleconferencing technology to increase

telepresence in the collaboration. The NICTA

Visualisation and Interaction over Collaborative

Access Tables (ViCAT) project employs three

tabletop displays with Access Grid nodes at three

geographically different locations. Each table or

CAT consists of a vertical projection area that is

utilised by two short-throw projectors and one back-

projected horizontal area, as shown in Figure 1. We

use the vertical displays for video conferencing; the

horizontal display supplies the main working area.

ViCAT supports multiple users at each site and

over a wide area network; a CSCW domain known

as Mixed Presence Groupware (MPG). MPG

connects both co-located and distributed

collaborators and their disparate displays via a

common shared virtual workspace.

Video conferencing is supported via AccessGrid

[4]. Not having the video and audio connection in the

groupware application itself restricts the application

from using the conferencing system for very specific

tasks. One of these uses has been presented in [8],

where the video system can be used to draw onto

traditional paper and then overlay the image onto the

application. This allows users to annotate using

traditional input devices such as pens and pencils.

However, an application independent conferencing

system allows the use of different groupware

applications simultaneously.

We have created a MPG framework, the

Transparent Input Device Layer (TIDL), that gives

application developers the following functionality: 1)

The ability to develop multi-user applications with a

Figure 1. A Collaborative Access Table (CAT).

traditionally GUI API, and 2) To provide a

meaningful subset of multi-user support to legacy

applications without modifications to the source code

or the need for recompilation.

TIDL overcomes the limitation of current graphic

environments that only effectively support one input

device. Although all major operating systems

support multiple devices, the devices’ input merge

down to one system cursor and one system keyboard.

This limitation prevents the independent control of

multiple cursors or having simultaneous keyboard

foci on different GUI components in one application.

If an application has the need to support multiple and

independent input devices, this support has to be

implemented by the application developer by

implementing the functionality of multiple system

cursors. This replicated functionality includes the

following: drawing the different mouse cursors on

top of the application’s GUI, the handling of

multiple foci for different users and network

distribution of input device events. Consequently,

supporting multiple input devices at the application

level results in inconsistent behaviour across

applications and can result in difficulties running

multiple applications simultaneously. TIDL provides

a generic and consistent manner of using local and

remote input devices across applications. We have

successfully run applications with twelve mice

concurrently, four at one host and eight at the second

host.

TIDL provides the following features to

applications linked to its API and to legacy

applications: network transparency for all input

device events, uniquely coloured cursors with

specific colouring for a particular host and an

annotation layer which operates on a per user basis.

For applications developed with the TIDL API,

unique device identification is provided in all events

generated by the toolkit to any application that

wishes to use the information.

A critical requirement is to allow users to

dynamically add or remove input devices to the local

machine and to collaborate with groups at different

geographic locations. Each user’s input devices are

independent of the other devices and all users work

simultaneously on different elements on the

application’s GUI or even on different applications.

The MPG support must have a policy free floor

control paradigm, to allow these decisions to be

made by the end user or application programmer.

This paper starts with a description of the related

work to our framework, and we then present TIDL, a

Java based framework, that allows developers to

create applications with support for multiple input

devices across different hosts. A wrapper application

with TIDL is described that enables users to use

legacy applications that do not support multiple input

devices. The use of this wrapper application does not

require modification or recompilation of the

application’s source code. Two example tabletop

applications are presented as a demonstration of the

framework in operation. The paper finishes with

some concluding remarks.

2. Related Work

Collaborative software can be divided into real-

time and non-real-time groupware. Non-real-time

groupware such as IBM Lotus Notes or Microsoft’s

Outlook calendar is commonly used in business

environments today. Presently, there exist three

different variants of real-time groupware: Single

Display Groupware (SDG), Shared Display

Groupware (ShDG) and Mixed Presence Groupware

(MPG). Single Display Groupware allows multiple

users with an arbitrary number of input devices,

simultaneously on one computer. Shared Display

Groupware connects single users on different

machines to work collaboratively on one application,

with one set of input devices on each machine.

Mixed Presence Groupware combines these two

approaches, allowing multiple users simultaneously

on each node in the network. Figure 2 illustrates the

distinction between real-time and non-real-time

groupware and the differences between SDG, ShDG

and MPG.

2.1 Single Display Groupware

Steward et al. [14] coined the term Single Display

Groupware. Stewart et al. [13] conducted a set of

studies which showed that people prefer to have

individual and independent input devices when

working simultaneously on the same machine.

The Multi-Device Multi-User Multi-Editor

(MMM) [2] was one of the earliest applications to

support multiple independent devices. Additionally

to independent devices, all users also had a specific

home area and user dependent menus. The

PEBBLES project [9] used PDAs as input devices.

The stylus could be used to move cursors on an

application running on a PC and to type text on the

PDA’s on-screen keyboard. Using a PDA as an input

device, also supplies the users with a small private

screen.

The MID toolkit [7] allows multiple devices

within one application. This Java toolkit uses calls to

the Microsoft Windows 98 API to extract the device

information for each connected device and then

resembles AWT events by sending MID events with

a device number instead of the normal AWT events.

The MIDDesktop [12] is constructed with the MID

toolkit. MIDDesktop supports the execution of

multiple applets simultaneously within one desktop

frame. All applications can receive events, however,

the applets naturally only support one input device at

a time. Simultaneous drag and drop is not possible if

there is no support from the applet.

Quite similar to MID is the SDGToolkit [18],

which makes use of the Windows XP RawInput API

to determine the specific device causing a particular

event. The SDGToolkit was designed with tabletop

displays in mind and can orient the cursors according

to the position of the people around the table. MID

and the SDGToolkit both use a listener concept to

notify the application of input events and augment

the events with the input device’s ID.

The DiamondTouch input device supports SDG

features in hardware [6]. This touch device can track

the finger positions of two users at the same time and

delivers the appropriate events to the software.

Rogers et al. utilised the DiamondTouch to study

how equal access to a tabletop infrastructure

influences the decision making process [10].

2.2 Shared Display Groupware

Shared Display Groupware (ShDG) supports

single users with one computer each. Their desktop

or application window is shared over the network

with a set of single users operating on individual

computers. Instead of supporting multiple input

devices on one host, ShDG toolkits and applications

utilise input devices on different hosts. The main

concern is synchronising the devices as events from

remote devices may have significant delays.

ShDG is usually built using either a replicated or

centralised architecture. A replicated architecture

requires the application to be run on each host. Only

input events are distributed amongst the system. All

instances are expected to react in the same way to the

input events, thus keeping all hosts synchronised. In

a centralised architecture, the application runs on one

central server and its output is broadcast to each

node. The replicated approach requires significantly

less bandwidth but is less robust than the centralised

approach. If one of the input events is lost, the

applications can become unsynchronized and it is

hard to restore a synchronized state.

An early implementation of a ShDG toolkit is

Rapport [1]. A main design goal of Rapport is to

allow the execution of legacy single-user

applications. Rapport utilises the principle of virtual

meeting rooms with the ability that users can enter

and leave any room as they wish, resembling the

behaviour of users in real-life meetings. Rapport uses

a single-site execution scheme, running the

application on one computer and displaying the

application’s output on all connected machines.

MMConf [5] employs a multi-site execution

scheme that executes the application on all hosts and

synchronises the input events on all machines. One

benefit of this execution scheme is the low

bandwidth requirements, but if events get lost, the

applications states can become inconsistent.

GroupKIT [11] is a toolkit to support the

development of real-time groupware by leveraging

event synchronization, registration of participants

and more.

2.3 Mixed Presence Groupware

MPG applications and toolkits need to support

multiple input devices simultaneously on a local host

but also input devices on remote hosts. Tang et al.

[16] [17] implemented a group drawing tool,

MPGSketch, that allowed multiple users to draw on

one shared surface. They identified a strong disparity

in the conversation between the co-located peers and

the remote users. Although the remote users were

able to draw on the same surface, most of the

communication occured between co-located peers.

Tang et al. drew digital shadows of the users’ arms

onto the drawing surface to make distributed

collaborators more aware of other users’ actions.

MPGSketch uses the SDGToolkit [18] to gather

events from multiple devices on a single host. The

distribution of the events to the remote sites is done

using the Collabrary shared dictionary [3]. However,

their MPGSketch is a single application and does not

provide a toolkit for implementing other MPG

applications.

3. Transparent Input Device Layer

TIDL is an API to allow applications to utilise an

arbitrary number of input devices on different hosts.

Instead of fetching information about the position

and state of the system cursor, we access the

underlying operating system’s interface to gather

events from the devices. These events are then

dispatched using Java’s GUI event processing

system.

We use a replicated architecture, with

applications operating on each host. TIDL provides

the necessary framework to broadcast the events to

each of these applications. TIDL operates in

conjunction with the application (if the application

employs the TIDL API at creation time by the

Figure 2. Time-Location matrix for groupware.

SDG, ShDG and MPG are all branches of real-

time groupware.

developer) or through a TIDL wrapper application

for legacy applications (if injected into the

application at start up time).

3.1 Support for groupware applications

TIDL is designed to minimise the complexity of

developing MPG applications, and to be no more

complex than the current Java AWT event API. Our

MPG event system fits neatly into Java’s own event

system and does not require changes in existing code

unless the developer wishes to utilise the additional

input device information provided by TIDL. Using

the input device information allows the developer to

provide programmatic control for simultaneous

events that may occur. For example, a disaster

coordination team looking at a map displaying the

disaster’s area may be distributed across different

sites, with multiple emergency team coordinators on

each site. Each of those coordinators have their own

input devices to move emergency units such as fire

brigade trucks or ambulance cars on a map to their

designated location. Because of the independence of

the input devices, team coordinators can discuss and

annotate the map and the position of the emergency

teams while other coordinators can move around

other teams at the same time. TIDL assigns colours

to each cursor, so by looking at the map the

coordinators can see who is doing changes or

annotations.

TIDL allows any user to use an annotation layer

and draw and write comments onto this layer.

Annotation is user specific, so while one user

annotates the application, all other users can still use

the application. The application developer can utilise

the extra information provided by TIDL to restrict

the viewing of annotations to a specific user.

TIDL automatically caters for network

synchronisation, the distribution of events to all

nodes in the network and draws a mouse cursor on

top of the application for every input device in the

system..

3.2 Support for legacy applications

The TIDL API allows developers to build

applications with active support for multiple

independent input devices. TIDL also allows legacy

applications to make use of multiple input devices

without altering or recompiling the application. A

legacy application can be initiated from within a

TIDL wrapper application to insert an invisible layer

in front of the application. This layer then works as

an annotation layer and intercepts all AWT events

that are delivered to the application. Those events are

translated into custom events and dispatched to the

application, as shown in Figure 3. Because the

custom events are subclassed from the AWT event

class, the application does not know that the events

are generated from a different source than real AWT

events. TIDL also draws the mouse cursors of each

input device onto an invisible layer atop of the

application. TIDL supports different foci for all

connected keyboards, and this allows users to type in

different text fields simultaneously even without

native support from the application. Each mouse and

keyboard combination is handled as user in TIDL

and a mouse click on a specific component changes

the keyboard focus (if applicable) for the user who

initiated the click. Succeeding keyboard events are

then sent to the appropriate component.

4. Implementation

The TIDL framework consists of two different

libraries. One is the TIDL library that broadcasts

events to different hosts, containing the

TIDLGlassPane and injection functionality. The

second library is the Multiple Device Direct

Interface (MDDI) which processes low level events

for input devices from the operating system, TIDL

itself relies on the events received from MDDI. The

following sections will outline each of these

libraries.

4.1 Multiple Device Direct Interface

MDDI accesses the devices connected to the local

computer and wraps the device’s events into Java

objects which can then be broadcasted to remote

nodes by TIDL. Due to Java’s limitation to one

system cursor we have to access the devices using

operating system dependent APIs. Currently, we

have implementations for Microsoft Windows XP

and Linux. Processing the devices through the native

APIs allows only relative mouse events instead of

absolute events in both implementations.

The Windows XP Raw Input API provides

developers with methods to receive events caused by

any connected input devices. If an application

registers a device on the Raw Input API, it will

receive those messages in the same way as a

standard application window receives notifications

such as window closing events or the like. Different

to standard input events however, Raw Input also

supplies a handle to identify the device producing

that event. From this handler a unique device number

is created to mark all events. Using the Java Native

Interface (JNI), the data is wrapped into a Java object

and then passed onto the TIDL layer.

Under Linux, we chose a different approach.

Instead accessing the devices via a high-level API,

the device files are read from in the devfs virtual file

system. Each connected device is represented as a

file (i.e. the first mouse is /dev/input/mouse0) and

the raw data coming from the device can be read

directly from the file. Writing to the file sends data

back to the device, but standard permissions on these

files are very restrictive in a default installation.

Reading from or writing to the files using input

streams in Java requires root access. Running any

Java application as root imposes a security risk on

the system. To avoid this, a python script fetches the

data from the devices and provides it on a TCP

socket. The Java interface to the Linux

implementation of MDDI then reads data from this

socket and wraps it into objects to be passed on to

TIDL. Alternatively, one could set the permissions

on the device file to be readable and writeable by any

user.

MDDI adds the device identifiers to each message

passed on to TIDL, so it can be used as library for

any application that needs to utilise SDG paradigms.

4.2 TIDLGlassPane

The TIDLGlassPane is the central component for

applications that make use of the TIDL architecture.

A GlassPane can be used in every

javax.swing.RootPaneContainer, which is the

interface for applets, frames, dialogs and windows in

Swing. A GlassPane is by default transparent and

appears to be on top of the application window, and

a GlassPane is the first component to receive AWT

events caused by the Java Virtual Machine (JVM).

The TIDLGlassPane intercepts AWT events and

consumes them. The application itself never receives

those events. Instead, the TIDLGlassPane receives

events via the TIDL framework and converts them

into custom subclassed AWT events, and passes

them on to the application. Figure 3 illustrates this

concept. An application can therefore use the same

listeners it would use for receiving regular AWT

events. The TIDL AWT events convert the relative

coordinates to absolute coordinates as required by

the AWT event.

A GlassPane is by default transparent, all TIDL

supported mouse cursors are drawn on this surface.

Every mouse cursor has a specific colour, dependent

on the host name and the device number. For

example, all devices on host A may have blue cursors

in different shades while all devices on host B have

red cursors in different shades. One user (one

keyboard/mouse combination) always has the same

colour, even if an application is closed and another

application is started. This assists in easy

identification of who is controlling a cursor.

Multiple simultaneous foci for mouse cursors and

keyboards is supported through reassembly of the

AWT events in the TIDLGlassPane, and does not

rely on the events generated by the JVM. The

multiple simultaneous foci are supported for devices

connected locally and remotely. For example, this

enables users to type into different text fields

simultaneously.

The basic building blocks of TIDL are modules

that receive all events from TIDL that would

otherwise be passed on to an underlying component.

Modules share the graphics context with the

GlassPane, thus everything a module draws onto this

context is represented on the same layer as the

mouse cursors. The annotation module supports the

ability to comment on the screen overlaying the

application. As the GlassPane covers the whole

frame including the menu bars, users can even use

the annotation layer to annotate or comment menus.

The annotation layer works on a per-user basis so

other users can still work on the application normally

while one or more users place annotations on the

screen.

4.3 TIDLInject

TIDL provides an elegant API to make

applications aware of multiple distributed input

devices. However, an application is required to

instantiate the TIDLGlassPane and assign the

TIDLGlassPane to the application’s window to

receive TIDL events. While this is straightforward

for newly designed applications, legacy applications

require a different approach. One option is to modify

the source code of legacy application with a

recompilation. A second approach (the one we have

employed) is to utilise our TIDLGlassPane with any

legacy application without the need for

recompilation.

We have created a wrapper application called

TIDLInject that allows us to inject our

TIDLGlassPane into an application at runtime.

Instead of starting the application normally, the

application’s main method is invoked by TIDLInject.

After the application has fully started up, TIDLInject

uses the java.awt.Frame.getFrames() method to get

references to all active frames and searches for a

JFrame. Once the JFrame is found, a TIDLGlassPane

is set to the GlassPane of the JFrame. As the TIDL

AWT events are subclasses of the standard AWT

events, the application does not notice that it receives

TIDL AWT events.

If the application starts up multiple JFrames,

Figure 3. The TIDLGlassPane intercepts all AWT

Events and discards them. The TIDLGlassPane

receives TIDLEvents via the TIDL system and

converts them into TIDLAWTEvents. These

events are then passed on to the application.

TIDLInject creates a frame the size of the entire

display, and within this frame, it resembles the

application’s JFrames as JInternalFrames. Swing

makes use of ContentPanes and we can just use the

ContentPane of any JFrame as ContentPane of a

JInternalFrame to make an exact copy of the GUI of

any application. Using JInternalFrames also allows

for TIDL to operate over multiple applications at the

same time, supporting multiple input devices across

the different applications simultaneously.

4.4 Limitations

There are some limitations on our approach. We

are using a replicated architecture, which requires the

application to run on each host. Although this

requires less bandwidth, the replicated architecture is

less robust than the centralized approach. If one

relative mouse movement event is lost, the cursor

can end up in different positions on the different

sites. If a user then clicks a button, this may cause

different actions, as the cursor may be over different

components. Disparities also occur if the application

uses random numbers or if the user needs to access a

specific file on the host. In the replicated approach,

every user sees only local files.

Because legacy applications have no knowledge

of the multiple input devices, some operations are

not simultaneously supported, such as drag and drop.

The same limitation applies to pop-up menus. If one

user causes a pop-up menu to appear, any click

outside of the menu causes the menu to disappear.

The standard GlassPane, which can be used with any

JFrame in the Swing model, is employed by TIDL to

insert a layer atop of the application. However, if an

application uses the GlassPane itself, TIDL would

replace the original GlassPane and lose some of the

application’s functionality.

As mentioned before, a GlassPane can only be

inserted onto one JFrame. If the JFrame closes and

the application opens another application window,

the application also loses support for multiple input

devices. Moreover, if the application causes a dialog

box or a new frame to appear, this new window does

not have TIDL support. However, it is possible to

avoid this by continuously polling the JVM for all

open frames, dialog boxes and windows and

resemble new ones in the desktop-wide frame

mentioned in Section 4.3.

5. Applications

We have employed MPG with two applications

that make use of TIDL. The first, MPGCoast is an

extension to the Course of Action Scheduling Tool

(COAST) created by Zhang et al. [19], and this

application is custom built using the TIDL features.

The second application ViSOR was developed by the

VisLab at the University of Sydney to visualize large

data sets, and we employed the TIDLInject wrapper

application to provide the collaborative functionality.

5.1 MPGCoast

The COAST application provides military

planners with a tabular input data model to aid

military planning operations. The system uses

domain specific tasks, resources, and conditions to

determine the required sequence of events to perform

effects based planning. In the original COAST

application, user input is limited to a single user. The

tabular input method of COAST makes intense use

of popup windows. This limits the possibilities of

simultaneous user input as popup windows may

occlude text fields other users are editing. COAST

uses a client-server model, with the client being the

data input interface and the server calculating the

possible courses of action for the given data.

Our MPGCoast extension runs on the client side

of COAST. Instead of displaying the tasks and

dependencies in a tabular view, we employ the

Figure 4. Architecture of the MDDI and TIDL

system.

Figure 5. MPGCoast actively supports multiple

devices.

jGraph libraries
1
 to create a graph to visualise the

dependencies of the different tasks, see Figure 5. All

nodes in the graph represent a specific task and can

be moved freely on the user interface. Tasks

dependent on other tasks are linked to the parent

task.

MPGCoast makes active use of the TIDL

framework, allowing multiple users to manipulate

graph nodes, add defined sub-graphs of nodes, and

delete nodes in a collaborative nature. Users may

switch back to the tabular view at any time to view

the data in a textual representation.

One of the main benefits of using TIDL in

MPGCoast is the annotation layer, which can be

switched on via a button on the left hand menu. As

the layer is user-dependent, different users can

discuss a set of tasks visually, while other users can

still move and add new tasks. As mentioned before,

when the annotation layer is enabled, no events are

passed on to the application. Using the jGraph

library imposes some limitations. As jGraph is not

designed for multi-user use, nodes cannot be moved

simultaneously.

5.2 ViSOR

ViSOR (Visualization of Spatially-Oriented

Relationships) [15] provides mechanisms to

dynamically construct a visualisation application

based on multiple users’ expertise at run-time.

ViSOR employs visual programming allowing users

to connect independently developed software

components (such as data analysis and visualisation

tools) together to construct an application.

ViSOR allows the development of a visualisation

application for data analysis as the result of

collective efforts from different domain experts.

Unlike other visual programming environments and

problem solving environments, this system enables

users to interactively design the visualization

application while the application is executed,

providing real-time feedback. The capability

provided by TIDL allows the process of

collaborative design in the visualisation application

to be carried out by not only the local users but also

remotely located collaborators. ViSOR does not

actively support TIDL in its code. Instead, the

TIDLInject wrapper application makes ViSOR

multi-device aware. Figure 6 shows a screenshot of

ViSOR visualising breast and cervical cancer rates

from Pennsylvania, Kentucky and West Virginia.

By augmenting ViSOR with TIDL, scientists at

different geographic locations can work on a data set

simultaneously. The annotation layer in TIDL makes

it easy for group members to point out specific areas

of interest and discuss them without the need to

modify the actual data.

1
 http://www.jgraph.com

6. Conclusion

In this paper we introduced the TIDL framework

that allows the use of multiple input devices within

an application. Current graphic environments do not

generically support the use of multiple independent

cursors and/or keyboards. TIDL supports an arbitrary

number of input devices on any number of hosts,

whereas previous toolkits were limited to either one

host or one input device per host.

With our TIDL architecture, we send subclasses

of Java AWT events that are tagged with the

device’s ID across a network, allowing applications

to use any number of mice and keyboards from

remote machines just as if they were connected

locally. Our TIDLGlassPane provides an easy way to

connect to other machines running TIDL and convert

the TIDL events into subclasses of AWT events. The

TIDLGlassPane, which is inserted in front of a

Swing JFrame, draws the multiple cursors, provides

a user-dependent annotation layer, and keeps track of

the foci for the different keyboards. The multiple

foci allow multiple users with keyboards to type into

different textboxes simultaneously.

While the TIDLGlassPane can be used by a new

application just with a few lines of extra code, we

have developed support of TIDL features for legacy

applications. We have created a wrapper application

called TIDLInject that enables multiple input devices

in third party applications without the need for

recompilation or altering the source code.

TIDLInject retrofits applications at run-time with

Figure 6. ViSOR is a data visualisation application

that is retrofitted with support for multiple input

devices at run-time.

support for multiple distributed input devices and an

annotation layer. Regardless of how it is used, TIDL

provides fundamental support for MPG aware

applications.

7. Acknowledgements

We would like to thank the ViCAT team, especially

Peter Eades, Julien Epps, Masahiro Takatsuka and

Mike Wu for their help in testing and improving

TIDL, the DSTO for their support in providing

information about and access to COAST, and Wayne

Piekarski and Stewart Itzstein for their comments on

this paper. This project is funded by the National

ICT Australia as part of the ViCAT project.

8. References

[1] Ahuja, S. R., Ensor, J. R., and Horn, D. N. The

rapport multimedia conferencing system.

SIGOIS Bull., Vol. 9, No. 2-3, pp 1--8, 1988.

[2] Bier, E. A., Freeman, S., and Pier, K. MMM:

The multi-device multi-user multi-editor. In

Proceedings of the SIGCHI conference on

Human factors in computing systems, pp 645--

646, Monterey, California, United States,

[3] Boyle, M. and Greenberg, S. GroupLab

Collabrary: A toolkit for multimedia groupware.

ACM CSCW Workshop on Networking Services

for Groupware, 2002.

[4] Childers, L., Disz, T., Olson, R., Papka, M. E.,

Stevens, R., and Udeshi, T. Access Grid:

Immersive Group-to-Group Collaborative

Visualization. Ames, Iowa, 2000.

[5] Crowley, T., Milazzo, P., Baker, E., Forsdick,

H., and Tomlinson, R. MMConf: an

infrastructure for building shared multimedia

applications. In Proceedings of the 1990 ACM

conference on Computer-supported cooperative

work, pp 329--342, Los Angeles, California,

United States,

[6] Dietz, P. and Leigh, D. DiamondTouch: a multi-

user touch technology. In UIST '01:

Proceedings of the 14th annual ACM symposium

on User interface software and technology, pp

219--226, Orlando, Florida,

[7] Hourcade, J. P. and Bederson, B. B.

Architecture and Implementation of a Java

Package for Multiple Input Devices (MID).

College Park, MD 20742, USA, 1999.

[8] Ishii, H. and Miyake, N. Toward an open shared

workspace: computer and video fusion approach

of TeamWorkStation. Commun. ACM, Vol. 34,

No. 12, pp 37--50, 1991.

[9] Myers, B. A., Stiel, H., and Gargiulo, R.

Collaboration using multiple PDAs connected to

a PC. In Proceedings of the 1998 ACM

conference on Computer supported cooperative

work, pp 285--294, Seattle, Washington, United

States,

[10] Rogers, Y., Hazlewood, W., Blevis, E., and Lim,

Y.-K. Finger talk: collaborative decision-

making using talk and fingertip interaction

around a tabletop display. In CHI '04: Extended

abstracts of the 2004 conference on Human

factors and computing systems, pp 1271--1274,

Vienna, Austria,

[11] Roseman, M. and Greenberg, S. GROUPKIT: a

groupware toolkit for building real-time

conferencing applications. In CSCW '92:

Proceedings of the 1992 ACM conference on

Computer-supported cooperative work, pp 43--

50, Toronto, Ontario, Canada,

[12] Shoemaker, G. B. D. and Inkpen, K. M.

MIDDesktop: An Application Framework for

Single Display Groupware Investigations.

Burnaby, BC, Canda, 2001.

[13] Stewart, J., Raybourn, E. M., Bederson, B., and

Druin, A. When two hands are better than one:

enhancing collaboration using single display

groupware. In CHI '98: CHI 98 conference

summary on Human factors in computing

systems, pp 287--288, Los Angeles, California,

United States,

[14] Stewart, J., Bederson, B. B., and Druin, A.

Single display groupware: a model for co-

present collaboration. In Proceedings of the

SIGCHI conference on Human factors in

computing systems, pp 286--293, Pittsburgh,

Pennsylvania, United States,

[15] Takatsuka, M. A component-oriented software

authoring system for exploratory visualization.

Future Generation Computer Systems: Journal of

Grid Computing: Theory, Methods and

Applications, Vol. 21, No. 7, pp 1213--1222,

2005.

[16] Tang, A., Boyle, M., and Greenberg, S. Display

and presence disparity in Mixed Presence

Groupware. In CRPIT '28: Proceedings of the

fifth conference on Australasian user interface,

pp 73--82, Dunedin, New Zealand,

[17] Tang, A., Neustaedter, C., and Greenberg, S.

Embodiments for Mixed Presence Groupware.

Calgary, Alberta, Canada, 2004.

[18] Tse, E. and Greenberg, S. Rapidly prototyping

Single Display Groupware through the

SDGToolkit. In Proceedings of the fifth

conference on Australasian user interface, pp

101--110, Dunedin, New Zealand,

[19] Zhang, L., Kristensen, L. M., Mitchell, B.,

Gallash, G., Mechlenborg, P., and Janczura, C.

COAST - An Operational Planning Tool for

Course of Action Development and Analysis. In

Proceedings of the 9th International Command

and Control Research and Technology

Symposium,

